
 

 

Synchronous Serial Interfacing 



2 

Serial communication 

 Single data wire, possibly also control and power wires 

 Words transmitted one bit at a time 

 Higher data throughput with long distances 

 Less average capacitance, so more bits per unit of time 

 Cheaper, less bulky 

 More complex interfacing logic and communication protocol 

 Sender needs to decompose word into bits 

 Receiver needs to recompose bits into word 

 Control signals often sent on same wire as data increasing protocol 

complexity 



SPI(Serial Peripheral Interface) 

 Synchronous Serial Communication 

 Developed by Motorola  

 Also known as MicroWire (National Semiconductor), QSPI    

(Queued), MicrowirePlus 

 There is no official specification for the SPI bus. 

 It is necessary to consult the data sheets of the devices. 

 Use to connect integrated circuits on a circuit board. 

 

 

 



SPI(Serial Peripheral Interface) 

 SPI keeps the number of signal connections to a minimum and 

so reduces circuit board complexity. 

 Many different peripheral device types available. 

 Typical SPI devices are :-  

 Converters (ADC, DAC) 

 Memories (EEPROM, RAM’s,Flash) 

 Sensors (Temperature, Humidity, Pressure) 

 Real Time Clocks 

 Potentiometers, LCD controllers, UART’s, USB controller, CAN 

controller,amplifiers 

 



SPI Configuration 

 Primarily used for serial communication between a host 
processor and peripherals. 

 Can also connect 2 processors via SPI 

 SPI works in a master slave configuration with the master 
being the host microcontroller for example and the slave 
being the peripheral 

 



SPI signals 

 The SPI bus specifies four logic signals. 

 SCLK - Serial Clock (output from master) 

 MOSI - Master Output, Slave Input (output from master) 

 MISO - Master Input, Slave Output (output from slave) 

 SS – Chip/Slave Select (active low; output from master) 

 Alternative naming conventions 

 SCK, CLK - Serial Clock (output from master) 

 SDI, DI, SI - Serial Data In 

 SDO, DO, SO - Serial Data Out 

 SSEL - Slave Select 

http://upload.wikimedia.org/wikipedia/commons/e/ed/SPI_single_slave.svg


SPI Characteristics 

 There is only one master, there number of slaves depends on 
the number of chip select lines of the master. 

 Synchronous operation,  

 Data is only output during the rising or falling edge of SCK 

 Data is latched during the opposite edge of SCK 

 The opposite edge is used to ensure data is valid at the time 
of reading 

 Supports Various Data Transfer Rates 

 Master sends out clocks and chip selects.  Activates the slaves it 
wants to communicate with 

 



Typical SPI Configuration 

1. The master pulls the slave select low and then 

issues clock cycles. 

2. The clock frequency is not specified in the SPI 

protocol and can be anything from 0 up to 70MHz 

depending on the characteristics of the slave 

device. 

3. The data transfer then takes place. 

4. The master then de-selects the slave. 

http://upload.wikimedia.org/wikipedia/commons/e/ed/SPI_single_slave.svg


Master Slave Setup 

 In this setup, there are 3 slave devices.  The SDO lines are tied 

together to the SDI line of the master. 

 The master determines which chip it is talking to by the CS lines.  

For the slaves that are not being talked to, the data output 

goes to a Hi Z state 

 Multiple Independent Slave 

Configuration 



Master Slave Setup 

Multiple slave cascaded 

 In this example, each slave is cascaded so that the output of 

one slave is the input of another.  When cascading, they are 

treated as one slave and connecting to the same chip select  

 

 

 



Simple master slave implementation 

 During each SPI clock cycle, a full duplex data 

transmission occurs: 

 the master sends a bit on the MOSI line; the slave reads 

it from that same line 

 the slave sends a bit on the MISO line; the master reads 

it from that same line 

 Not all transmissions require all four of these 

operations to be meaningful but they do happen. 

 The number of bits transferred is not fixed but is 

usually a multiple of 8-bits. 

 



SPI Bus characteristics 

 It is up to the master and slave devices to know 

whether a received byte is meaningful or not.  

 So a device must discard the received byte in a 

"transmit only" frame or generate a dummy byte for 

a "receive only" frame.  

 No Acknowledgement  

 Master doesn't even know if slave is present! 

 Slaves can be thought of as IO devices of the 

master. 



Basic serial data transfer 

SLAVE 

7 

6 

5 

4 

3 

2 

1 

0 

0 

1 

2 

3 

4 

5 

6 

7 

MOSI (SDO) 
MASTER 

MISO (SDI) 

SCLK 

SS 

The registers within the master and slave act like shift registers 

shifting one bit on every cycle of the SCLK. 



SPI Interconnection 



30-3-2015 

Hardware description SPI 



 Most SPI interfaces have two configuration bits, called clock polarity 

(CPOL) and clock phase (CPHA).  

 CPOL will determine if the clock idles high or low: 

 CPOL = 0 SCK will idle low 

 CPOL = 1 SCK will idle high  

 If CPOL=0 data are shifted out ,  

 on the falling edge of the clock if CPHA=0  

 on the rising edge of the clock if CPHA=1 

 If CPOL=1, data are shifted out  

 on the rising edge of the clock if CPHA=0 

 on the falling edge of the clock if CPHA=1 

 

 

 

Data transfer details 



SPI Data Transfer Modes 



Data transfer details 

 As each bit has two states, this allows for four different 

combinations, all of which are incompatible with each other.  

 For two SPI devices to talk to each other, they need to be set 

to use the same clock polarity and phase settings. 

 

 

 

 

 

 

 

 

SPI-

mode 
CPOL CPHA 

0 

1 

2 

3 

0 

0 

1 

1 

0 

1 

0 

1 

Modes 0 and 3 are the most common. 

With SPI modes 0 and 3, data is always 

latched in on the rising edge of SCK and 

always output on the falling edge of SCK. 



Serial protocols: I2C  

 I2C (Inter-IC) 

 Two-wire serial bus protocol developed by Philips 

Semiconductors  

 Enables peripheral ICs to communicate using simple 

communication hardware 

 Common devices capable of interfacing to I2C bus: 

 EPROMS, Flash, and some RAM memory, real-time clocks, watchdog timers, and 

microcontrollers 



What is I2C used for? 

 Data transfer between ICs and systems at relatively low 

rates  

 “Classic” I2C is rated to 100K bits/second  

 “Fast Mode” devices support up to 400K bits/second  

 A “High Speed Mode” is defined for operation up to 3.4M 

bits/second 

 Reduces Board Space and Cost By:  

 Allowing use of ICs with fewer pins and smaller packages  

 Greatly reducing interconnect complexity  

 Allowing digitally controlled components to be located close 

to their point of use 



I2C Bus Characteristics 

 Two wire serial data & control bus implemented with the serial 
data (SDA) and clock (SCL) lines  

 For reliable operation, a third line is required: 
Common ground  

 Unique start and stop condition  

 Slave selection protocol uses a 7-Bit slave address  

 The bus specification allows an extension to 10 bits  

 Bi-directional data transfer  

 Acknowledgement after each transferred byte  

 No fixed length of transfer  

 Multiple Devices Connected On Bus 

 



I2C Bus Definitions 

 Master:  

 Initiates a transfer by generating   

start and stop conditions  

 Generates the clock  

 Transmits the slave address  

 Determines data transfer direction   

 Slave:  

 Responds only when addressed  

 Timing is controlled by the clock line  



I2C Bus Configuration 

 2-wire serial bus – Serial data (SDA) and Serial clock (SCL) 

 Half-duplex, synchronous, multi-master bus 

 No chip select or arbitration logic required 

 



V 0.3 

24 

I2C (Inter-Integrated-Circuit) Bus 
I2C is a two wire serial interface. 

18F242 

SDA 

Microchip 24LC515 

SDA 

A2 SCL 

10K 

10K 

SCL 

Vdd 

Vdd 

A1 

A0 

SDA 

A2 SCL 

A1 

A0 

SCL – clock line 

SDA – data 

(bidirectional) 



25 

I2C Features 

 Multiple receivers do not require separate select lines At  
start of each I2C transaction a 7-bit device address is sent 

 Each device listens – if device address matches internal 
address, then device responds 

 SDA (data line) is bidirectional, communication is half 
duplex 

 SDA, SCLK are open-drain, require external pullups  

 Allows multiple bus masters . 

 



26 

I2C clock 

• Not a “traditional” clock 

• Normally is kept “high” using a pull-up 

• Pulsed by the master during data transmission 

• Master could be either the transmitter or 

receiver 

• Slave device can hold clock low if needs more time 

• Allows for flow control 



Bit Transfer on the I2C Bus  

 In normal data transfer, the data line only changes state 

when the clock is low  

SDA 

SCL 
Data line stable; 

Data valid 
Change 

of data 

allowed 



Start and Stop Conditions 

A transition of the data line while the clock line is high  is defined 

as either a start or a stop condition. 

Both start and stop conditions are generated by the bus master  

The bus is considered busy after a start condition, until a stop 

condition occurs  

Start 

Condition 

Stop 

Condition 

SCL SCL 

SDA SDA 



I2C Addressing 

 Each node has a unique 7 (or 10) bit address  

 Peripherals often have fixed and programmable  

address portions  

 Addresses starting with 0000 or 1111 have special 

functions:-  

  0000000 Is a General Call Address  

  0000001 Is a Null (CBUS) Address  

  1111XXX Address Extension  

  1111111  Address Extension –  Next Bytes are the Actual 

Address 



 

MSB 

ACK 

LSB 

7 – Bit Slave Address 

R / Wr 

First Byte in Data Transfer on the I2C Bus  

R/Wr  

 0 – Slave written to by Master 

 1 – Slave read by Master 

 

ACK – Generated by the slave whose address has been output. 



31 of 40 

I2C Bus Connections  

 Masters can be  

 Transmitter only  

 Transmitter and receiver  

 Slaves can be  

 Receiver only  

 Receiver and transmitter 



32 of 40 

Acknowledgements 

 Master/slave receivers pull data line low for one clock pulse 
after reception of a byte  

 Master receiver leaves data line high after receipt of the last 
byte requested  

 Slave receiver leaves data line high on the byte  following the 
last byte it can accept 

Acknowledgement 

from receiver 

Transmitter releases 

SDA line during 9th 

clock pulse. 



Acknowledgements 

 From Slave Receiver to Master Transmitter:  

  After address received correctly  

  After data byte received correctly  

 From Slave Transmitter to Master Receiver:  

  Never (Master Receiver generates ACK)  

 From Master Transmitter to Slave Receiver :  

  Never (Slave generates ACK)  

 From Master Receiver to Slave Transmitter :  

  After data byte received correctly 



34 of 40 

Negative Acknowledge 

 Receiver leaves data line high for one clock pulse 

after reception of a byte  

Not acknowledgement 

(NACK) from receiver 

Transmitter releases 

SDA line during 9th 

clock pulse. 



Negative Acknowledge (Cont’d.) 

 From Slave Receiver to Master Transmitter:  

  After address not received correctly  

  After data byte not received correctly  

  Slave Is not connected to the bus  

 From Slave Transmitter to Master Receiver:  

  Never (Master Receiver generates ACK)  

 From Master Transmitter to Slave:  

  Never (Slave generates ACK)  

 From Master Receiver to Slave Transmitter :  

  After last data byte received correctly 



I2C Protocol 

1. Master sends start condition (S) and controls the clock signal 

2. Master sends a unique 7-bit slave device address 

3. Master sends read/write bit (R/W) – 0 - slave receive, 1 - slave transmit 

4. Receiver sends acknowledge bit (ACK) 

5. Transmitter (slave or master) transmits 1 byte of data 

 



I2C Protocol (cont.) 

6. Receiver issues an ACK bit for the byte received 

7. Repeat 5 and 6 if more bytes need to be transmitted. 

8.a) For write transaction (master transmitting), master issues stop condition   

(P) after last byte of data. 

8.b) For read transaction (master receiving), master does not acknowledge 

final byte and issues stop condition (P) to tell the slave the transmission is 

done 



Repeated start 

Combined Format 

 A repeated start avoids releasing the bus and therefore 

prevents another master from taking over the bus 



Multi-master I2C Systems 

 Multimaster situations require two additional 

features of the I2C protocol  

 Arbitration:  

 Arbitration is the procedure by which competing 

masters decide final control of the bus  

 I2C arbitration does not corrupt the data transmitted 

by the prevailing master  

 Arbitration is performed bit by bit until it is uniquely 

resolved  

 Arbitration is lost by a master when it attempts to assert 

a high on the data line and fails  



Arbitration Between Two Masters 

 As the data line is like a wired AND, a ZERO address bit overwrites a ONE  

 The node detecting that it has been overwritten stops transmitting and waits 
for the Stop Condition before it retries to arbitrate the bus  


